

C09-M-304/C09-CHST-304

3248

BOARD DIPLOMA EXAMINATION, (C-09) MARCH/APRIL—2016 DME—THIRD SEMESTER EXAMINATION

ELECTRICAL ENGINEERING AND BASIC ELECTRONICS

Time : 3 hours]

[Total Marks : 80

3×10=30

PART—A

Instructions : (1) Answer all questions.

- (2) Each question carries **three** marks.
- (3) Answer should be brief and straight to the point and shall not exceed *five* simple sentences.
- 1. State the expression for self-inductance and mention its units.
- **2.** Define dynamically induced e.m.f.
- 3. Define work and write its unit.
- **4.** State the materials used for the following parts of d.c. generator :
 - (a) Armature winding
 - (b) Commutator
 - (c) Yoke
- 5. Draw power flow diagram of d.c. generator.
- **6.** State how the direction of rotation of capacitor start 1-phase induction motor can be reversed.

/3248 *

1

[Contd...

- **7.** State the expression for power in 1-phase a.c. circuit and write the formula for power factor.
- 8. Define capacity of a battery and state its unit.
- 9. How are *p*-type and *n*-type materials formed?
- **10.** State the effect of electrical shock and burn.

PART—B	10×5=50

Instructions : (1) Answer any five questions.

- (2) Each question carries **ten** marks.
- (3) Answers should be comprehensive and the criterion for valuation is the content but not the length of the answer.
- **11.** The field coil of a d.c. machine has 400 turns and has an initial flux of 0.05 Wb. Calculate the e.m.f. induced in the coil, when—
 - (a) the flux is reduced to zero in 0.015 sec;
 - (b) the flux is reduced to a residual magnetism of 0.01 Wb in 0.01 sec. 10

12.	A d.c. long-shunt compound motor takes a current of 30-A				
	from a 230-V d.c. supply. Its armature, series field and shunt				
	field resistances are 0 06 , 0 08 and 115 respectively.				
	Calculate the back e.m.f. of the motor.				

- 13. (a) Explain phase difference in 3-phase system.
 (b) Explain star and delta connections.
 14. (a) Draw a neat sketch of welding transformer.
 5
 - (b) Explain the principle of working of an alternator and mention the relationship between its frequency and speed.
- 15. (a) Explain the operation of LED.
 (b) Explain the operation of Zener diode.
 5
- /3248 *

16.	-	plain the construction and working principle of namometer-type wattmeter with a neat sketch.	10
17.	(a)	Define (i) permeability and (ii) reluctance. Mention their units.	4
	(b)	A 4-pole lap wound d.c. motor having 648 armature conductors and it has flux per pole of 25 m Wb. Find the value of toque, when its armature current is 60 A.	6
18.	(a)	Explain the constructional details of a 3-phase induction motor.	5
	(b)	Explain the construction of a lead-acid cell.	5